4.6 Article

Electron-ion dynamics in laser-assisted desorption of hydrogen atoms from H-Si(111) surface

期刊

JOURNAL OF APPLIED PHYSICS
卷 110, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3638064

关键词

-

资金

  1. National Science Foundation [CMMI-0927345]

向作者/读者索取更多资源

In the framework of real time real space time-dependent density functional theory we have studied the electron-ion dynamics of a hydrogen-terminated silicon surface H-Si(111) subjected to intense laser irradiation. Two surface fragments of different sizes have been used in the simulations. When the intensity and duration of the laser exceed certain levels (which depend on the wavelength) we observe the desorption of the hydrogen atoms, while the underlying silicon layer remains essentially undamaged. Upon further increase of the laser intensity, the chemical bonds between silicon atoms break as well. The results of the simulations suggest that with an appropriate choice of laser parameters it should be possible to remove the hydrogen layer from the H-Si(111) surface in a matter of a few tens of femtoseconds. We have also observed that at high laser field intensities (2-4 V/angstrom in this work) the desorption occurs even when the laser frequency is smaller than the optical gap of the silicon surface fragments. Therefore, nonlinear phenomena must play an essential role in such desorption processes. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3638064]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据