4.6 Article

Structure and photoluminescence of ultrathin films of SnO2 nanoparticles synthesized by means of pulsed laser deposition

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3485811

关键词

atomic force microscopy; energy gap; nanofabrication; nanoparticles; photoluminescence; pulsed laser deposition; surface morphology; thin films; tin compounds; X-ray diffraction

向作者/读者索取更多资源

Tin oxide (SnO2) ultrathin films were deposited by pulsed laser deposition (PLD) onto SiO2/Si and quartz substrates, at various nominal thicknesses ranging from isolated nanoparticles (NPs) to similar to 300 nm-thick films, under an oxygen background pressure of 10 mTorr. The microstructural and surface morphologies of the NP-based SnO2 films were characterized by x-ray diffraction and atomic force microscopy, as a function of their nominal film thickness. The PLD-SnO2 films were found to be composed of NPs (in the 1-6 nm range), whose size increases with the film thickness. The energy band gap, as determined from the absorption edge, was found to shift to higher values with decreasing the film thickness (i.e., decreasing the NPs size). It was found that an annealing at 700 degrees C under O-2 ambient is a prerequisite to get a photoluminescence (PL) emission from the PLD-SnO2 films. The PL of the annealed SnO2 films was found to consist of two broad emission bands, regardless of the SnO2 film thickness. The first band is composed of 3 PL subbands peaking at 3.20, 3.01, and 2.90 eV, while the second one is centered on 2.48 eV. In spite of the observed band-gap widening (as confirmed by theoretical calculation), we show that surface state (e.g., oxygen vacancies) dominate completely the PL emission of SnO2 NPs, which becomes more luminescent as the NPs size decreases while the PL energy remains unchanged. The PL properties of the PLD-SnO2 NPs are discussed in terms of defects and/or oxygen vacancies related transitions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3485811]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据