4.6 Article

Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation

期刊

JOURNAL OF APPLIED PHYSICS
卷 107, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3273363

关键词

charge exchange; gamma-ray effects; optical fibres; paramagnetic resonance

资金

  1. Shanghai Leading Academic Discipline Project and Science Committee [S30108, 08DZ2231100, 08DZ2271700]
  2. National Natural Science Foundation of China [60577043]
  3. Shanghai University [shucx080149]

向作者/读者索取更多资源

The formation and conversion processes of defect centers in low water peak single mode optical (LWPSM) fiber irradiated with gamma rays were investigated at room temperature using electron spin resonance. Germanium electron center (GEC) and self-trapped hole center (STH) occur when the fibers are irradiated with 1 and 5 kGy cumulative doses, respectively. With the increase in irradiation doses, the GEC defect centers disappear, and new defect centers such as E-' centers (Si and Ge) and nonbridge oxygen hole centers (NBOHCs) generate. The generation of GEC and STH is attributed to the electron transfer, which is completely balanced. This is the main reason that radiation-induced attenuation (RIA) of the LWPSM fiber is only 10 dB/km at communication window. The new defect centers come from the conversion of GEC and STH to E-' centers and NBOHC, and the conversion processes cause bond cleavage, which is the root cause that the RIA of the LWPSM fiber significantly increases up to 180 dB/km at working window. Furthermore, the concentration of new defect centers is saturated easily even by increasing cumulative doses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据