4.6 Article

Optical gain characteristics of staggered InGaN quantum wells lasers

期刊

JOURNAL OF APPLIED PHYSICS
卷 107, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3407564

关键词

amplification; electronic structure; III-V semiconductors; indium compounds; piezoelectricity; quantum well lasers; valence bands; wide band gap semiconductors

资金

  1. National Science Foundation [0701421]
  2. U.S. Department of Energy [DE-FC26-08NT01581]

向作者/读者索取更多资源

Staggered InGaN quantum wells (QWs) are analyzed as improved gain media for laser diodes (LDs) lasing at 440 and 500 nm. The calculation of band structure is based on a 6-band k center dot p method taking into account the valence band mixing, strain effect, and spontaneous and piezoelectric polarizations as well as the carrier screening effect. Staggered InGaN QWs with two-layer and three-layer step-function like In-content InGaN QWs structures are investigated to enhance the optical gain as well as to reduce the threshold current density for LDs emitting at 440 and 500 nm. Our analysis shows that the optical gain is enhanced by 1.5-2.1 times by utilizing the staggered InGaN QW active region emitting at 440 nm, which leads to a reduction of the threshold current density up to 24% as compared to that of the conventional InGaN QW laser. Staggered InGaN QWs with enhanced optical gain shows significantly reduced blue-shift as carrier density increases, which enables nitride QWs with high optical gain in the green spectral regime. The use of green-emitting three-layer staggered InGaN QW is also expected to lead to reduction in the threshold carrier density by 30%. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3407564]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据