4.6 Article

Simulations of luminescent solar concentrators: Effects of polarization and fluorophore alignment

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3467801

关键词

-

资金

  1. National Science Foundation [DMR-0705908, DMS-0553223]

向作者/读者索取更多资源

We model the effects of dye molecule alignment on the collection efficiency of luminescent solar concentrators (LSCs). A Monte Carlo model for photon transport in LSC's is derived and utilized, which incorporates the effects of fluorescent-dye-molecular alignment and the subsequent control over absorption, emission, and propagation properties. We focus on the effects of molecular alignment statistics on photon absorption and subsequent emission, including polarization and propagation direction imparted by dipole direction, to model device light-capture efficiency, defined as the ratio of the amount of light reaching particular slab edges to that incident on a face. We find that modest control of alignment, coupled with reasonable and attainable emission-absorption dipole angles, can produce very large collection efficiencies for a range of device parameters. We note that efficiencies for small values of dye molecule Stoke's shift may be made as large as those for homogeneous (unaligned) systems with large Stoke's shift. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3467801]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据