4.6 Article

Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3475151

关键词

-

资金

  1. DARPA [HR001106]

向作者/读者索取更多资源

Suspended microchannel resonators (SMRs) are an innovative approach to fluid-based microelectromechanical mass sensing that circumvents complete immersion of the sensor. By embedding the fluidics within the device itself, vacuum-based operation of the resonator becomes possible. This enables frequency shift-based mass detection with high quality factors, and hence sensitivity comparable to vacuum-based micromechanical resonators. Here we present a detailed analysis of the sensitivity of these devices, including consideration of fundamental and practical noise limits, and the important role of binding kinetics in sensing. We demonstrate that these devices show significant promise for protein detection. For larger, biologically-important targets such as rare whole virions, the required analysis time to flow sufficient sample through the sensor can become prohibitively long unless large parallel arrays of sensors or preconcentrators are employed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3475151]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据