4.6 Article

Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer

期刊

JOURNAL OF APPLIED PHYSICS
卷 107, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3408899

关键词

field effect transistors; leakage currents; metal-insulator transition; thin film transistors; vanadium

资金

  1. NSF [PHY-0601184, ECS-0335765]
  2. AFOSR [FA9550-08-1-0203]

向作者/读者索取更多资源

Electrostatic control of the metal-insulator transition (MIT) in an oxide semiconductor could potentially impact the emerging field of oxide electronics. Vanadium dioxide (VO2) is of particular interest due to the fact that the MIT happens in the vicinity of room temperature and it is considered to exhibit the Mott transition. We present a detailed account of our experimental investigation into three-terminal field effect transistor-like devices using thin film VO2 as the channel layer. The gate is separated from the channel through an insulating gate oxide layer, enabling true probing of the field effect with minimal or no interference from large leakage currents flowing directly from the electrode. The influence of the fabrication of multiple components of the device, including the gate oxide deposition, on the VO2 film characteristics is discussed. Further, we discuss the effect of the gate voltage on the device response, point out some of the unusual characteristics including temporal dependence. A reversible unipolar modulation of the channel resistance upon the gate voltage is demonstrated for the first time in optimally engineered devices. The results presented in this work are of relevance toward interpreting gate voltage response in such oxides as well as addressing challenges in advancing gate stack processing for oxide semiconductors. (C) 2010 American Institute of Physics. [doi:10.1063/1.3408899]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据