4.6 Article

Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication

期刊

JOURNAL OF APPLIED PHYSICS
卷 107, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3291125

关键词

Boltzmann equation; calcium compounds; compaction; copper; density; doping; high-pressure techniques; iron; manganese; texture; thermoelectric power

资金

  1. National Natural Science Foundation of China [50672019, 10804024]
  2. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

A series of Fe, Mn, and Cu doped Ca3Co4O9+delta samples, Ca-3(Co,M)(4)O9+delta (M=Fe, Mn, and Cu), were fabricated by cold high-pressure compacting technique. Their thermoelectric properties were investigated from room temperature up to 1000 K. The cold high-pressure compacting method is advantageous to increasing density and texture, in favor of the improvement of thermoelectric performance. The electrical transport measurements indicate that Fe/Mn substitutes for Co mainly in [CoO2] layers whereas the substitution of Cu for Co takes place in [Ca2CoO3] layers. The thermoelectric properties as well as electronic correlations depend not only on the substitution ion but also the Co site that is replaced. Thermopower can be well calculated by the carrier effective mass according to Boltzmann transport model, indicating that the electronic correlation plays a crucial role in the unusual thermoelectric characteristics of this system. From the changes in thermopower, resistivity, and thermal conductivity, thermoelectric performance of Ca3Co4O9+delta is efficiently improved by these transition metals doping. Fe doped samples possess the highest ZT values. Combining cold high-pressure technique, ZT of Ca3Co3.9Fe0.1O9+delta can reach similar to 0.4 at 1000 K, which is quite large among ceramic oxides, suggesting that Fe doped Ca3Co4O9+delta could be a promising candidate for thermoelectric applications at elevated temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据