4.6 Article

Point defects analysis of zinc oxide thin films annealed at different temperatures with photoluminescence, Hall mobility, and low frequency noise

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3494046

关键词

-

向作者/读者索取更多资源

Zinc oxide (ZnO) thin films annealed at different temperatures were studied with photoluminescence (PL), electrical resistivity, Hall mobility, and 1/f noise spectroscopy. Relatively high electrical conductivity and carrier concentration in sample annealed at 400 degrees C suggested the presence of ZnO interstitials. Rapid reduction in electrical conductivity and carrier concentration upon increasing the annealing temperature suggested that ZnO interstitials could be eliminated by high temperature annealing. Presence of G-R noise in sample annealed at 400 degrees C indicated high level of electron trapping activities. Density of Zn vacancies acting as electron traps was estimated by Lorentzian fitting on the G-R noise. PL spectra exhibiting dominant green emission in all samples suggested the presence of Zn vacancies in high concentration. Yellow-orange emission in PL in samples annealed at 600 degrees C and below indicated the presence of O interstitials, while the same emission in samples annealed at higher temperatures were ascribed to Si impurities diffused from the substrate. Sharp reduction in mobility and surge in Hooge's parameter in sample annealed at 700 degrees C implied high level of electron scattering due to large extrinsic Si impurities. Gradual rise in green-yellow emission and electron concentration as annealing temperature increased from 500 to 700 degrees C were ascribed to the gradual formation of O vacancies. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494046]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据