4.6 Article

Nucleation of highly dense nanoscale precipitates based on warm laser shock peening

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3481858

关键词

ageing; aluminium alloys; dislocation density; internal stresses; nanostructured materials; nucleation; plastic deformation; precipitation

资金

  1. Office of Naval Research (ONR)
  2. NSF [CMMI 0900327]

向作者/读者索取更多资源

Warm laser shock peening (WLSP) is an innovative thermomechanical processing technique, which combines the advantages of laser shock peening (LSP) and dynamic aging (DA). It has been found that a unique microstructure with highly dense nanoscale precipitates surrounded by dense dislocation structures is generated by WLSP. In order to understand the nucleation mechanism of the highly dense precipitates during WLSP, aluminum alloy 6061 (AA6061) has been used by investigating the WLSP process with experiments and analytical modeling. An analytical model has been proposed to estimate the nucleation rate in metallic materials after WLSP. The effects of the processing temperature and high strain rate deformation on the activation energy of nucleation have been considered in this model. This model is based on the assumption that DA during WLSP can be assisted by the dense dislocation structures and warm temperature. The effects of the working temperature and dislocation density on the activation energy of precipitation have been investigated. This model is validated by a series of experiments and characterizations after WLSP. The relationships between the processing conditions, the nucleation density of precipitates and the defect density have been investigated. (c) 2010 American Institute of Physics. [doi:10.1063/1.3481858]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据