4.6 Article

General hypothesis and shell model for the synthesis of semiconductor nanotubes, including carbon nanotubes

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3474650

关键词

adhesion; carbon nanotubes; nanofabrication; semiconductor growth; semiconductor nanotubes

向作者/读者索取更多资源

Semiconductor nanotubes, including carbon nanotubes, have vast potential for new technology development. The fundamental physics and growth kinetics of these nanotubes are still obscured. Various models developed to elucidate the growth suffer from limited applicability. An in-depth investigation of the fundamentals of nanotube growth has, therefore, been carried out. For this investigation, various features of nanotube growth, and the role of the foreign element catalytic agent (FECA) in this growth, have been considered. Observed growth anomalies have been analyzed. Based on this analysis, a new shell model and a general hypothesis have been proposed for the growth. The essential element of the shell model is the seed generated from segregation during growth. The seed structure has been defined, and the formation of droplet from this seed has been described. A modified definition of the droplet exhibiting adhesive properties has also been presented. Various characteristics of the droplet, required for alignment and organization of atoms into tubular forms, have been discussed. Employing the shell model, plausible scenarios for the formation of carbon nanotubes, and the variation in the characteristics of these carbon nanotubes have been articulated. The experimental evidences, for example, for the formation of shell around a core, dipole characteristics of the seed, and the existence of nanopores in the seed, have been presented. They appear to justify the validity of the proposed model. The diversities of nanotube characteristics, fundamentals underlying the creation of bamboo-shaped carbon nanotubes, and the impurity generation on the surface of carbon nanotubes have been elucidated. The catalytic action of FECA on growth has been quantified. The applicability of the proposed model to the nanotube growth by a variety of mechanisms has been elaborated. These mechanisms include the vapor-liquid-solid mechanism, the oxide-assisted growth mechanism, the self-catalytic growth mechanism, and the vapor-quasiliquid-solid mechanism. The model appears to explain most, if not all, of the experimental findings reported to date on semiconductor nanotubes. It addresses various issues related to the uniqueness of the single-walled and multiwalled carbon nanotube growths; it explains why almost all carbon nanotubes are grown at a temperature between 800 and 1000 degrees C; and why metals, semiconductors, oxides, and clusters serve almost equally well as FECAs to achieve these growths. (C) 2010 American Institute of Physics. [doi:10.1063/1.3474650]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据