4.8 Article

Flexible high-temperature dielectric materials from polymer nanocomposites

期刊

NATURE
卷 523, 期 7562, 页码 576-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature14647

关键词

-

资金

  1. US Office of Naval Research [N00014-11-1-0342]
  2. Air Force Office of Scientific Research [FA9550-14-1-0264]
  3. Dow Chemical Corporation

向作者/读者索取更多资源

Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems(1-8). Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability(1-3,9), are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications(1,9,10). However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration(11-13). Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据