4.6 Article

Magnetostriction and its inverse effect in Tb0.3Dy0.7Fe2 alloy

期刊

JOURNAL OF APPLIED PHYSICS
卷 107, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3392801

关键词

-

资金

  1. National Natural Science Foundation of China [U0734001, 50874050]

向作者/读者索取更多资源

Magnetostriction and its inverse effect (also referred to as a magnetomechanical effect) in the Tb0.3Dy0.7Fe2 alloy have been investigated based on the three dimensional Stoner-Wohlfarth model in this paper. The solutions of direction cosines of magnetization under a compressive stress and a field both applied along the [112] axis have been obtained by following a conventional minimization procedure in which the nonlinear equations for equilibrium conditions have been solved numerically. With a more accurate computation presented here, some new theoretical results have been achieved. These results are in good agreement with experimental observations reported previously. In the demagnetized state the resultant anisotropy for the alloy is determined by the combination of the magnetocrystalline and stress-induced anisotropy energies, and degenerates from cubic into uniaxial at a critical stress. When a field is applied to the alloy along the [112] axis, the alloy under the compressive stress is more difficult to magnetize and can attain a maximum change in bulk magnetostriction at the critical stress. The main reason for the large bulk magnetostriction is that the fractional occupancy of the [(1) over bar(1) over bar1] or [11 (1) over bar]-oriented domains increases from 1/8 to 1/2 with the stress. This more accurate computation has been proposed for similar investigations and the results will also be helpful for a better understanding of the magnetostriction in materials such as the FeGa alloys. (C) 2010 American Institute of Physics. [doi:10.1063/1.3392801]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据