4.6 Article

Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3457848

关键词

-

资金

  1. Science Foundation Ireland [05/IN/I888]
  2. European Community (EC) [216171, 216373]

向作者/读者索取更多资源

In this paper we investigate the effects of intravalley acoustic phonon scattering on the quantum transport and on the electrical characteristics of multigate silicon nanowire metal-oxide-semiconductor field-effect transistors. We show that acoustic phonons cause a shift and broadening of the local DOS in the nanowire, which modifies the electrical characteristics of the device. The influence of scattering on off-state and on-state currents is investigated for different values of channel length. In the ballistic transport regime, source-to-drain tunneling current is predominant, whereas in the presence of acoustic phonons, diffusion becomes the dominant current transport mechanism. A three-dimensional quantum mechanical device simulator based on the nonequilibrium Green's function formalism in uncoupled-mode space has been developed to extract device parameters in the presence of electron-phonon interactions. Electron-phonon scattering is accounted for by adopting the self-consistent Born approximation and using the deformation potential theory. (C) 2010 American Institute of Physics. (doi: 10.1063/1.3457848)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据