4.6 Article

Experimental verification of metamaterial based subwavelength microwave absorbers

期刊

JOURNAL OF APPLIED PHYSICS
卷 108, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3493736

关键词

-

资金

  1. European Union
  2. TUBITAK [107A004, 107A012]
  3. Turkish Academy of Sciences

向作者/读者索取更多资源

We designed, implemented, and experimentally characterized electrically thin microwave absorbers by using the metamaterial concept. The absorbers consist of (i) a metal back plate and an artificial magnetic material layer; (ii) metamaterial back plate and a resistive sheet layer. We investigated absorber performance in terms of absorbance, fractional bandwidth, and electrical thickness, all of which depend on the dimensions of the metamaterial unit cell and the distance between the back plate and metamaterial layer. As a proof of concept, we demonstrated a lambda/4.7 thick absorber of type I, with a 99.8% absorption peak along with a 8% fractional bandwidth. We have shown that as the electrical size of the metamaterial unit cell decreases, the absorber electrical thickness can further be reduced. We investigated this concept by using two different magnetic metamaterial inclusions: the split-ring resonator (SRR) and multiple SSR (MSRR). We have also demonstrated experimentally a lambda/4.7 and a lambda/4.2 thick absorbers of type II, based on SRR and MSRR magnetic metamaterial back plates, respectively. The absorption peak of the SRR layout is 97.4%, while for the MSRR one the absorption peak is 98.4%. The 10 dB bandwidths were 9.9% and 9.6% for the SRR and MSRR cases, respectively. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3493736]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据