4.6 Article

Plasmonic absorption enhancement in organic solar cells with thin active layers

期刊

JOURNAL OF APPLIED PHYSICS
卷 106, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3243163

关键词

-

资金

  1. IWT (Institute for the Promotion of Innovation by Science and Technology in Flanders) [060843]
  2. Belgian Science Policy Office [IAP P6-10]

向作者/读者索取更多资源

The influence of silver nanoparticles on light absorption in organic solar cells based on poly(3-exylthiophene):(6,6)-phenyl-C61-butyric-acid-methyl ester is studied by means of finite element method simulations. The metallic nanoparticles are embedded directly inside the active layer. We investigate the enhancement mechanism and the influence of factors such as the spacing between neighboring nanoparticles, the particle diameter, and the coating thickness. The plasmonic resonance of the particles has a wideband influence on the absorption, and we observe a rich interaction between plasmonic enhancement and the absorption characteristics of the active layer material. An enhancement with a factor of around 1.56 is observed for nanoparticles with a diameter of 24 nm and a spacing of 40 nm, bringing the structure to the absorption level of much thicker active layers without nanoparticles. In addition, a significant effect of the particle coating thickness is observed. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3243163]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据