4.6 Article

Direct evidence for degradation of polaron excited states in organic light emitting diodes

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3151689

关键词

-

向作者/读者索取更多资源

We investigate the intrinsic degradation mechanisms of the prototypical phosphorescent emissive material fac-tris(2-phenylpyridine) iridium [Ir(ppy)(3)] doped into the host 4, 4'-bis(3-methylcarbazol-9-yl)-2,2'-biphenyl (mCBP) by separately evaluating the effects of unipolar current, optical excitation, and their combination. We find that the mCBP anion is unstable and becomes more so in its excited state. Degradation due to the formation of defect states is evident from changes in the capacitance-voltage characteristics and from increasing drive voltage over time of a unipolar test device. These changes are understood within the framework of trapped-charge-limited transport, allowing for the determination of rate constants for each degradation mechanism. We also observe degradation of the hole transport material 4, 4'-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl under sub-energy-gap illumination and suggest that this instability may proceed through excitation of its cationic state. These results provide direct evidence for polaron-induced degradation that limits the operational lifetime of organic light emitting diodes. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3151689]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据