4.6 Article

Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials

期刊

JOURNAL OF APPLIED PHYSICS
卷 106, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3226884

关键词

-

资金

  1. Office of Naval Research [N00014-07-1-0190]
  2. U.S. Department of Energy [DE-FG02-07ER46453, DE-FG02-07ER46471, DE-AC02-06CH11357]

向作者/读者索取更多资源

We investigate the lower limit to the lattice thermal conductivity of Bi2Te3 and related materials using thin films synthesized by the method of elemental reactants. The thermal conductivities of single layer films of (Bi0.5Sb0.5)(2)Te-3 and multilayer films of (Bi2Te3)(m)(TiTe2)(n) and [(BixSb1-x)(2)Te-3](m)(TiTe2)(n) are measured by time-domain thermoreflectance; the thermal conductivity data are compared to our prior work on nanocrystalline Bi2Te3 and a Debye-Callaway model of heat transport by acoustic phonons. The homogeneous nanocrystalline films have average grain sizes 30 < d < 100 nm as measured by the width of the (003) x-ray diffraction peak. Multilayer films incorporating turbostratic TiTe2 enable studies of the effective thermal conductivity of Bi2Te3 layers as thin as 2 nm. In the limit of small grain size or layer thickness, the thermal conductivity of Bi2Te3 approaches the predicted minimum thermal conductivity of 0.31 W/m K. The dependence of the thermal conductivity on grain size is in good agreement with our Debye-Callaway model. The use of alloy (Bi, Sb)(2)Te-3 layers further reduces the thermal conductivity of the nanoscale layers to as low as 0.20 W/m K. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3226884]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据