4.6 Article

Ultimate limit and temperature dependency of light-emitting diode efficiency

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3125514

关键词

-

向作者/读者索取更多资源

We discuss the ultimate limit of performance of semiconductor light-emitting diodes (LEDs) and its dependence on temperature. It is known that in high quality semiconductor materials it is, in principle, possible to reach wall plug efficiencies exceeding unity, which allows electroluminescent cooling in addition of very high efficiency light emission. Our simulation results suggest a few fairly simple measures that may further improve the external quantum efficiency (EQE) of LEDs toward the electroluminescent cooling limit. These include reducing the current density, modifying the LED structure by making thicker active regions and barrier layers, and doping of the active material. Our calculations also indicate that, contrary to the present understanding, operating LEDs at relatively high temperatures of 400-600 K may, in fact, improve the performance. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3125514]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据