4.6 Article

Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3065092

关键词

crystal structure; multilayers; scandium compounds; semiconductor materials; sputter deposition; superlattices; thermal conductivity; thermoreflectance; tungsten compounds; zirconium compounds

资金

  1. ONR/DoD through a Multidisciplinary University Research Initiative (MURI) [N00014-07-1-0190]
  2. U.S. Department of Energy [DEFG02-91-ER45439]

向作者/读者索取更多资源

The cross-plane thermal conductivities of metal/semiconductor multilayers and epitaxial superlattices have been measured as a function of period by time-domain thermoreflectance at room temperature. (001)-oriented ZrN (metal)/ScN (semiconductor) multilayers and (Zr,W)N/ScN epitaxial superlattices with the rocksalt crystal structure were grown on (001)MgO substrates by reactive magnetron sputtering. A distinct minimum in thermal conductivity at a period of similar to 6 nm is observed for ZrN/ScN multilayers. The minimum thermal conductivity of 5.25 W/m K is a factor of similar to 2.7 smaller than the mean of the thermal conductivities (including only the lattice contributions) of the values measured for films of the constituent materials, and approximately equal to the lattice component of the thermal conductivity of a Zr0.65Sc0.35N alloy film (similar to 5 W/m K). Alloying the ZrN layers with WNx reduces the lattice mismatch, yielding epitaxial (Zr,W)N/ScN superlattices. The addition of WNx also reduces the thermal conductivity to similar to 2 W/m K, a value that is sufficiently low to suggest promise for these materials as solid-state thermionic generators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据