4.6 Article

The effect of impurities on hydrogen bonding site and local vibrational frequency in ZnO

期刊

JOURNAL OF APPLIED PHYSICS
卷 106, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3213387

关键词

beryllium; cadmium; calcium; density functional theory; doping profiles; hydrogen bonds; II-VI semiconductors; impurities; infrared spectra; interstitials; magnesium; semiconductor doping; sodium; strontium; wide band gap semiconductors; zinc compounds

资金

  1. Korea Research Foundation [KRF-2005-084-C00007]

向作者/读者索取更多资源

For isovalent impurities such as Be, Mg, Ca, Sr, and Cd and group-I element such as Na in ZnO, first-principles local-density-functional calculations show that the interstitial position of H depends on the type of impurities, either occupying a bond center (BC) site or an antibonding (AB) site adjacent to the impurity atom. The AB site is more favorable in the vicinity of Na, Ca, Sr, and Cd, while the stable position is the BC site in the case of Be. We find that both electronegativity and atomic size play a role in switching the H interstitial position between the BC and AB sites. Previous studies have suggested that two infrared lines observed at 3611 and 3326 cm(-1) result from hydrogen atoms positioned at BC and AB sites, respectively. The results for the H bonding sites and defect concentrations suggest that Ca is the most probable impurity as the origin of the infrared line at 3326 cm(-1). However, for impurities around which H is positioned at the AB site, the calculated local vibrational frequencies are found to be similar to within 30 cm(-1), making it difficult to determine the specific impurity responsible for the 3326 cm(-1) line.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据