4.6 Article

Controllable spin-dependent transport in armchair graphene nanoribbon structures

期刊

JOURNAL OF APPLIED PHYSICS
卷 106, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3212984

关键词

energy gap; graphene; Green's function methods; nanostructured materials; spin polarised transport; tight-binding calculations; tunnelling

资金

  1. European Community

向作者/读者索取更多资源

Using the nonequilibrium Green's functions formalism in a tight binding model, the spin-dependent transport in armchair graphene nanoribbons controlled by a ferromagnetic gate is investigated. Beyond the oscillatory behavior of conductance and spin polarization with respect to the barrier height, which can be tuned by the gate voltage, we especially analyze the effects of width-dependent band gap and of the nature of contacts. The oscillation of spin polarization in graphene nanoribbons with a large band gap is strong in comparison with that in infinite graphene sheets. Very high spin polarization (close to 100%) is observed in normal-conductor/graphene/normal-conductor junctions. Moreover, we find that the difference in electronic structure between normal conductor and graphene generates confined states which have a strong influence on the transport properties of the device. This study suggests that the device should be carefully designed to obtain a high controllability of spin-polarized current.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据