4.6 Article Proceedings Paper

Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3076043

关键词

-

向作者/读者索取更多资源

Magnetic nanoparticles (MNP) offer promise for local hyperthermia, thermoablative cancer therapy and microwave curing of polymers. Rosensweig's theory predicts that particle size dependence on RF magnetic heating of ferrofluids is chiefly determined by magnetic moment, magnetic anisotropy, and the viscosity of the fluid. Since relaxation times are thermally activated and material parameters can have strong T dependences, heating rates peak at a certain temperature. We extend the model to include the T dependence of the magnetization and anisotropy using mean field theory and literature reported T dependences of selected fluids considered for biomedical applications. We model materials with Curie temperatures near room temperature for which the magnetic properties are strongly T dependent to address the problem of self-regulated heating of ferrofluids. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3076043]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据