4.6 Article

B activation and clustering in ion-implanted Ge

期刊

JOURNAL OF APPLIED PHYSICS
卷 105, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3091289

关键词

binding energy; boron; doping; elemental semiconductors; germanium; ion implantation; segregation; stoichiometry; thermal stability

向作者/读者索取更多资源

Experimental studies about electrical activation and clustering of B implanted in crystalline Ge (c-Ge) are reported. To this aim, we structurally and electrically investigated c-Ge samples implanted at different temperatures with B at 35 keV in the high-concentration dopant regime (0.67-25x10(20) B/cm(3)). We elucidated that a high level of damage, in the form of amorphous pockets, favors the electrical activation of the dopant, and a complete activation was achieved for properly chosen implant conditions. We found, by joining channeling measurements with the electrical ones, that the reason for incomplete B activation is the formation of B-Ge complexes with a well-defined stoichiometry of 1:8. The thermal stability of the B-doped samples, up to 550 degrees C, was also investigated. The tested stability demonstrates that the B clustering, responsible of B inactivity, is characterized by high binding energies and higher thermal budgets are needed to make them to dissolve. These studies, besides clarify the physical mechanisms by which B dopes Ge, can be helpful for the realization of ultrashallow junctions for the future generation devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据