4.6 Article

Effects of tube diameter and chirality on the stability of single-walled carbon nanotubes under ion irradiation

期刊

JOURNAL OF APPLIED PHYSICS
卷 106, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3194784

关键词

-

资金

  1. Key Project of the Knowledge Innovation Programme of the Chinese Academy of Sciences [KJCX3-SYW-N10]
  2. Chinese Postdoc Science Foundation

向作者/读者索取更多资源

Using molecular dynamics method, we investigated the influence of tube diameter and chirality on the stability of single-walled carbon nanotubes (CNTs) under ion irradiation. We found that in the energy range below 1 keV, the dependence of CNT stability on the tube diameter is no longer monotonic under C ion irradiation, and the thinner (5, 5) CNT may be more stable than the thicker (7, 7) CNT, while under Ar irradiation, the CNT stability increases still monotonically with the CNT diameter. This stability behavior was further verified by the calculations of the threshold ion energies to produce displacement damage in CNTs. The abnormal stability of thin CNTs is related to their resistance to the instantaneous deformation in the wall induced by ion pushing, the high self-heating capacity, as well as the different interaction properties of C and Ar ions with CNT atoms. We also found that under ion irradiation the stability of a zigzag CNT is better than that of an armchair CNT with the same diameter. This is because of the bonding structure difference between the armchair and the zigzag CNTs with respect to the orientations of graphitic networks as well as the self-healing capacity difference. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3194784]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据