4.6 Article

Nanoscale liquid-vapor phase-change physics in nonevaporating region at the three-phase contact line

期刊

JOURNAL OF APPLIED PHYSICS
卷 106, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3225992

关键词

-

资金

  1. Andrew H. Hines, Jr./Progress Energy Endowment Fund

向作者/读者索取更多资源

Nanoscale liquid film evaporation is usually associated with super-high heat transport rates and can be found in natural processes and in many industrial and advanced technologies. In this paper, thin film evaporation is simulated in a nanochannel using molecular dynamics to study the effect of varying nanochannel height and film thickness. Three nanochannel heights (16.32, 25.5, and 35.7 nm; constant liquid film thickness = 3 nm) and three liquid film thicknesses (2, 4, and 6 nm; constant nanochannel height = 25.5 nm) are simulated to study six cases. A nonevaporating film is obtained for all six cases. Hamaker constant, vapor pressure, film thickness, and net evaporation and heat fluxes are evaluated. An additional simulation (case 7) is run with simultaneous evaporation-condensation; no nonevaporating film is obtained. Thus, the creation of a nonevaporating film, and its thickness (if the film forms), depends on the combination of three factors, namely, vapor pressure, substrate temperature, and solid-liquid molecular interaction strength. (C) 2009 American Institute of Physics. [doi:10.1063/1.3225992]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据