4.6 Article

Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2930883

关键词

-

向作者/读者索取更多资源

The generic case of a ferroelectric solid solution is considered wherein different symmetry phases located at opposing ends of the diffusionless phase diagram are separated by a morphotropic boundary (MB). It is shown that the Landau theory of weak first-order phase transformations automatically predicts vanishing of the anisotropy of polarization, continuity of thermodynamic properties, and a drastic decrease in domain wall energy near the MB line that results in the formation of adaptive ferroelectric nanodomain states. Low-resolution diffraction from these adaptive states acquired at the coherence lengths of elastic x-ray or neutron scattering probes will produce the same diffraction pattern as attributed to monoclinic (M-A,M-B,M-C) phases. It is further shown that the electric- or stress-field-induced reconfiguration of these adaptive nanodomain states results in a softening of the piezoelectric, elastic, and dielectric properties near the MB line. In addition, the spherical degeneration of the polarization direction, reflecting the decoupling of the polarization from the crystal lattice at the MB, also predicts the formation of a polar glass state whose properties should be similar to the special properties of amorphous ferromagnets. In particular, the vanishing of the polarization anisotropy at the MB should result in ferroelectric domains with irregular shapes exhibiting high configurational sensitivity to external forces. The theory further predicts that two tricritical points will occur on the line of paraelectric -> ferroelectric transitions and it is shown that all two-phase equilibrium lines of the diffusionless phase diagram-including the MB line-must be replaced by two-phase fields. Within these two-phase fields, the adjacent ferroelectric-ferroelectric and paraelectric-ferroelectric phases coexist. Possible topologies of the equilibrium MB phase diagram illustrating these two-phase equilibrium fields are computed and discussed. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据