4.6 Article

Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2940732

关键词

-

向作者/读者索取更多资源

We report steady-state and time-resolved photoluminescence (TRPL) measurements on individual GaN nanowires (6-20 mu m in length, 30-940 nm in diameter) grown by a nitrogen-plasma-assisted, catalyst-free molecular-beam epitaxy on Si(111) and dispersed onto fused quartz substrates. Induced tensile strain for nanowires bonded to fused silica and compressive strain for nanowires coated with atomic-layer-deposition alumina led to redshifts and blueshifts of the dominant steady-state PL emission peak, respectively. Unperturbed nanowires exhibited spectra associated with high-quality, strain-free material. The TRPL lifetimes, which were similar for both relaxed and strained nanowires of similar size, ranged from 200 ps to over 2 ns, compared well with those of low-defect bulk GaN, and depended linearly on nanowire diameter. The diameter-dependent lifetimes yielded a room-temperature surface recombination velocity S of 9x10(3) cm/s for our silicon-doped GaN nanowires.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据