4.6 Article

High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2903484

关键词

-

向作者/读者索取更多资源

A high-refractive-index (high-n) encapsulant is highly desirable because it can result in enhancement of light-extraction efficiency from high-n semiconductor light-emitting diode (LED) chips. A uniform dispersion of TiO2 nanoparticles in epoxy for LED encapsulation is demonstrated for surfactant-coated TiO2 nanoparticles by drying, mixing with a solvent, refluxing, centrifuging, and mixing with epoxy. The refractive index of surfactant-coated TiO2-nanoparticle-loaded epoxy is 1.67 at 500 nm, significantly higher than that of conventional epoxy (n=1.53). Theoretical analysis of optical scattering in nanoparticle-loaded encapsulants reveals that the diameter of nanoparticles and the volume loading fraction of nanoparticles are of critical importance for optical scattering. Quasispecular transparency of the encapsulant film can be achieved if the thickness of the film is kept below the optical scattering length. A graded-refractive-index multilayer encapsulation structure with the thickness of each layer being less than the mean optical scattering length is proposed in order to reduce optical losses from scattering and Fresnel reflection. Furthermore, three-dimensional optical ray-tracing simulations demonstrate that encapsulants with an optimized scattering coefficient, k(s), benefit from optical scattering by extracting deterministic trapped modes. Theoretical light-extraction enhancements larger than 50% are found when comparing scattering-free to scattering encapsulation materials. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据