4.6 Article Proceedings Paper

The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2837647

关键词

-

向作者/读者索取更多资源

Magnetic nanoparticles with a high specific absorption rate (SAR) have been developed and used in mouse models of cancer. The magnetic nanoparticles are comprised of predominantly iron oxide magnetic cores surrounded by a dextran layer for colloidal stability. The average diameter of a single particle (core plus dextran) is 92 +/- 14 nm as measured by photon correlation spectroscopy. Small angle neutron scattering measurements under several H2O/D2O contrast conditions and at varying nanoparticle concentrations have revealed three length scales: >10 mu m, several hundred nanometers, and tens of nanometers. The latter corresponds to the particle diameter; the several hundred nanometers corresponds to a hard sphere interaction radius of the core/shell nanoparticles; >10 mu m corresponds to the formation of long-range, many-particle structures held together by magnetic interactions and dextran. The long-range collective magnetic behavior appears to play a major role in enhancing the SAR. For samples having nominally equal concentrations and similar saturation magnetizations, the measured SAR is 1075 W/(g of Fe) for tightly associated nanoparticles and 150 W/(g of Fe) for very loosely associated nanoparticles at an applied field of 86 kA/m (1080 Oe) and 150 kHz. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据