4.6 Article

Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach

期刊

JOURNAL OF APPLIED PHYSICS
卷 104, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2963706

关键词

-

资金

  1. DOE/EPSCoR Implementation [DE-FG02-04ER-46139]
  2. SC EPSCoR Office/Clemson University

向作者/读者索取更多资源

We report herein a proof-of-principle study of grain boundary engineering in the polycrystalline p-type Bi2Te3 system. Utilizing the recently developed hydrothermal nanocoating treatment technique, we fabricated an alkali-metal(s)-containing surface layer on the p-Bi2Te3 bulk grain, which in turn became part of the grain boundary upon hot pressing densification. Compared to the untreated bulk reference, the dimensionless figure of merit ZT has been improved by similar to 30% in the Na-treated sample chiefly due to the reduced thermal conductivity, and similar to 38% in the Rb-treated sample mainly owing to the improved power factor. The grain boundary phase provides a new avenue by which one can potentially decouple the otherwise inter-related electrical resistivity, Seebeck coefficient, and thermal conductivity within one thermoelectric material. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据