4.6 Article

Development of pulsed laser-assisted thermal relaxation technique for thermal characterization of microscale wires

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2936873

关键词

-

向作者/读者索取更多资源

A transient technique is developed to measure the thermal diffusivity of one-dimensional microscale wires. In this technique, the thin wire is suspended over two copper electrodes. Upon fast (nanosecond) pulsed laser irradiation, the wire's temperature will quickly increase to a high level and then decrease gradually. Such temperature decay can be used to determine the sample's thermal diffusivity. To probe this temperature evolution, a dc is fed through the wire to sensor its voltage variation, from which the thermal diffusivity can be extracted. A 25.4 mu m thin Pt wire is characterized to verify this technique. Sound agreement is obtained between the measured data and reference value. Applying this pulsed laser-assisted thermal relaxation technique, the thermal diffusivity of multiwall carbon nanotube bundles and microscale carbon fibers is measured. Detailed analysis is conducted to study the effect of the wire embedded in the paste/base on the final measurement result. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据