4.6 Article

Numerical analysis of acoustic wave propagation in layered carbon nanofiber reinforced polymer composites

期刊

JOURNAL OF APPLIED PHYSICS
卷 104, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2973039

关键词

-

资金

  1. TcSUH
  2. National Science Foundation [CMMI-0620897]
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [0757302] Funding Source: National Science Foundation

向作者/读者索取更多资源

Polymer composites reinforced by carbon nanofibers (CNFs) in the form of paper sheet show significant vibration and acoustic damping improvement when compared to pure matrix materials. Without looking into the microscopic energy dissipation mechanisms, this paper analyzes the wave propagation in the composites from a macroscopic point of view. The CNF nanocomposites in this study were treated as stacking of alternating layers of pure polymer and CNF reinforced polymer. Analyses of acoustic wave propagation focused oil revealing the effects of acoustic impedance discontinuity at the interfaces of the layered structure. Plane wave transmission coefficient has been calculated as a function of the number of the layer repeats and thickness at different wave frequencies. Oscillations in the transmission coefficient have been observed when the acoustic wavelength is oil the same order of the bilayer thickness, indicating the possibility of designing the nanocomposite structure to optimize noise reduction characteristics. The numerical analysis converges with effective media theory when acoustic wavelength is much larger than the layer thickness. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据