4.6 Article

Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2841461

关键词

-

向作者/读者索取更多资源

We report the results of effective direct current (dc) resistivities and alternating current (ac) complex permittivity measurements carried out on two series of polymer/multiwalled (MW) carbon nanotube (CNT) composite samples as function of the CNTs volume fraction and temperature. The CNTs have typical aspect ratio over 100:1 and are quasiuniformly dispersed in two types of polymer host [epoxy and polystyrene (PS)-cobutyl acrylate latex] according transmission electron microscopy characterization. A percolation threshold occurs in the composites with the PS latex matrix when the CNT volume fraction is approximate to 0.012. In contrast, the set of resistivity data for samples containing epoxy resin as host matrix is not representative of an intrinsically percolation transition. Atomic force microscopy, coupled to the measurement of the local electric resistances, permits us to study the agglomerate distribution in both types of composites. The differences in morphology between the two series of polymer/MWCNTs are attributed to interface effects between the elongated filler nanoparticles and the polymer chains. Comparison of the measured effective dc and ac resistivities, at temperatures ranging from 30 to 300 K, with Sheng's model supports the fact that charge transport in the composites follows a thermal fluctuation induced tunneling mechanism, in which the tunneling of the electrons through the thermally induced fluctuating potential barrier formed by a thin insulating polymer layer separating MWCNTs aggregates. The spectral behavior of permittivity is consistent with a power-law form. Several mixing laws were tested to represent the filler fraction dependence of the effective permittivity in the microwave range of frequencies; however, none of them is able to quantitatively describe the sets of data. The basic deficiency of these formulas is that they make no explicit reference to the internal length scales in the composite samples. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据