4.6 Article Proceedings Paper

Micromagnetic modeling of ferromagnetic resonance assisted switching

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2838332

关键词

-

向作者/读者索取更多资源

We studied the steady state behavior and magnetization switching process of single domain particles subject to ac and dc magnetic fields using analytical and numerical models based on the Landau-Lifshitz-Gilbert equation. We compared the analytical solutions for circularly polarized fields with a numerical single spin model and circularly and linearly polarized ac magnetic fields. It has been found, that the initial conditions and the dynamics of the external fields (field ramps and amplitude changes) strongly determine which precession orbit the magnetization converges to, if the magnetization precession is stable, and if the magnetization switches. We also studied the effects of field amplitudes, field angles, and damping on the switching behavior. The presented results can be applied to high power ferromagnetic resonance experiments and ferromagnetic resonance assisted magnetic recording schemes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据