4.6 Article

Improvement of photovoltaic response based on enhancement of spinorbital coupling and triplet states in organic solar cells

期刊

JOURNAL OF APPLIED PHYSICS
卷 103, 期 4, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2885349

关键词

-

向作者/读者索取更多资源

This article reports an improvement of photovoltaic response by dilspersing phosphorescent Ir(ppy)(3) molecules in an organic solar cell of poly[2-methoxy-5-(2'-ethylhexyloxy)-1 4-phenylenevinylene] (MEH-PPV) blended with surface-functionalized fullerene 1-(3-methyloxycarbonyl)propy(1-phenyl [6,6]) C-61 (PCBM). The magnetic field-dependent photocurrent indicates that the dispersed lr(ppy)(3) molecules increase the spin-orbital coupling strength with the consequence of changing the singlet and triplet ratios through intersystem crossing due to the penetration of the delocalized pi electrons of MEH-PPV into the large orbital magnetic field of Ir(ppy)(3) dopants. The tuning of singlet and triplet exciton ratios can lead to an enhancement of photovoltaic response due to their different contributions to the two different photocurrent generation channels: exciton dissociation and exciton-charge reaction in organic materials. In addition, the photoluminescence temperature dependence reveals that the dispersed Ir(ppy)(3) reduces the recombination of dissociated charge carriers in the PCBM doped MEH-PPV. As a result, adjusting singlet and triplet ratios by introducing heavy-metal complex Ir(ppy)(3) provides a mechanism to improve the photovoltaic response through controlling exciton dissociation, exciton-charge reaction, and recombination of dissociated charge carriers in organic bulk-heterojunction solar cells. (C) 2008 American Institute Of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据