4.4 Article

Development of a Zero-Dimensional Mesoscale Thermal Model for Urban Climate

期刊

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008JAMC1962.1

关键词

-

资金

  1. National Center for Environmental Health at the U. S. Centers for Disease Control and Prevention [30-07184-03 CDC/Task Order 0078]
  2. National Center of Excellence on SMART Innovations for Urban Climate and Energy
  3. National Science Foundation

向作者/读者索取更多资源

A simple energy balance model is created for use in developing mitigation strategies for the urban heat island effect. The model is initially applied to the city of Phoenix, Arizona. There are six primary contributions to the overall energy balance: incident solar radiation, anthropogenic heat input, conduction heat loss, outgoing evapotranspiration, outgoing convection, and outgoing emitted radiation. Meteorological data are input to the model, which then computes an urban characteristic temperature at a calculated time step for a specified time range. The model temperature is shown to have the same periodic behavior as the experimentally measured air temperatures. Predicted temperature changes, caused by increasing the average urban albedo, agree within 0.1 degrees C with comparable maximum surface temperature predictions from the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The present model, while maintaining valid energy-balance physics, allows users to quickly and easily predict the relative effects of urban heat island mitigation measures. Representative mitigation strategies, namely changes in average albedo and long-wavelength emissivity are presented here. Increasing the albedo leads to the greater reduction in daytime maximum temperatures; increasing the emissivity leads to a greater reduction in nighttime minimum temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据