4.4 Article

Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin

期刊

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007JAMC1565.1

关键词

-

向作者/读者索取更多资源

To accurately estimate near-surface (2 m) air temperatures in a mountainous region for hydrologic prediction models and other investigations of environmental processes, the authors evaluated daily and seasonal variations (with the consideration of different weather types) of surface air temperature lapse rates at a spatial scale of 10 000 km(2) in south-central Idaho. Near-surface air temperature data (T-max, T-min, and T-avg) from 14 meteorological stations were used to compute daily lapse rates from January 1989 to December 2004 for a medium-elevation study area in south-central Idaho. Daily lapse rates were grouped by month, synoptic weather type, and a combination of both (seasonal-synoptic). Daily air temperature lapse rates show high variability at both daily and seasonal time scales. Daily Tmax lapse rates show a distinct seasonal trend, with steeper lapse rates (greater decrease in temperature with height) occurring in summer and shallower rates (lesser decrease in temperature with height) occurring in winter. Daily Tmin and Tavg lapse rates are more variable and tend to be steepest in spring and shallowest in midsummer. Different synoptic weather types also influence lapse rates, although differences are tenuous. In general, warmer air masses tend to be associated with steeper lapse rates for maximum temperature, and drier air masses have shallower lapse rates for minimum temperature. The largest diurnal range is produced by dry tropical conditions (clear skies, high solar input). Cross-validation results indicate that the commonly used environmental lapse rate [typically assumed to be -0.65 degrees C (100 m)(-1)] is solely applicable to maximum temperature and often grossly overestimates Tmin and Tavg lapse rates. Regional lapse rates perform better than the environmental lapse rate for Tmin and Tavg, although for some months rates can be predicted more accurately by using monthly lapse rates. Lapse rates computed for different months, synoptic types, and seasonal-synoptic categories all perform similarly. Therefore, the use of monthly lapse rates is recommended as a practical combination of effective performance and ease of implementation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据