4.5 Article Proceedings Paper

Numerical Simulation and Analysis of the Muzzle Flow During the Revolving Barrel Gun Firing

出版社

ASME
DOI: 10.1115/1.4023338

关键词

-

向作者/读者索取更多资源

The revolving barrel gun is the principal component of the close-in weapons system (CIWS) that provides important terminal defense against anti-ship cruise missiles that have penetrated fleet defenses. The muzzle flow field of the revolving barrel firing is extraordinarily complex. The 3D computational model was formulated to illustrate the details of the flow field produced by the revolving barrel gun firing. The algorithm of a second order monotone upstream-centered schemes (MUSCL) approach with the advection upstream splitting method (AUSM) solver was used to simulate the high pressure muzzle flow field. The interior ballistic process was coupled with the simulation. The predicted muzzle velocity and maximum bore pressure were in good agreement with those measured in gun firing. Moreover, the muzzle flow field was obtained during the revolving barrel firing and was subsequently analyzed. The maximum lateral velocity of the first and second projectile fired was about 1.6 and 3.8 m/s.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据