4.5 Article

Asymptotic Approach to Oblique Cross-Sectional Analysis of Beams

出版社

ASME
DOI: 10.1115/1.4025412

关键词

-

资金

  1. U.S. Army through the Vertical Lift Research Center of Excellence at the Georgia Institute of Technology

向作者/读者索取更多资源

Structural and aeroelastic analyses using beam theories by default choose a cross section that is perpendicular to the reference line. In several cases, such as swept wings with high AR, a beam theory that allows for the choice of a cross section that is oblique to the reference line may be more convenient. This work uses the variational asymptotic method (VAM) to develop such a beam theory. The problems addressed are the planar deformation of a strip and the full 3D deformation of a solid, prismatic, right-circular cylinder, both made of homogeneous, isotropic material. The motivation for choosing these problems is primarily the existence of 3D elasticity solutions, which comprise a complete validation set for all possible deformations and which are shown to be accurately captured by the current analysis. A secondary motivation was that the development and final results of the beam theory, i.e., the cross-sectional stiffness matrix and stress-strain-displacement recovery relations, are obtainable as closed-form analytical expressions. These results, coupled with the VAM-based beam analysis being devoid of ad hoc assumptions, culminate in what is expected to be of significance when formulating a general oblique cross-sectional analysis for beams with anisotropic material and initial curvature/twist, the detailed treatment of which will be alluded to in a later paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据