4.5 Article

Cyclic Viscoplastic-Viscodamage Analysis of Shape Memory Polymers Fibers With Application to Self-Healing Smart Materials

出版社

ASME
DOI: 10.1115/1.4007140

关键词

shape memory polymer; fiber; self-healing; viscoplasticity; viscodamage; cyclic loading; constitutive behavior; cold-drawn programming

资金

  1. LONI institute under the Louisiana Board of Regents [LEQSF(2007-12)-ENH-PKSFI-PRS-01]
  2. Center for Computation and Technology (CCT) at Louisiana State University
  3. US National Science Foundation [CMMI 0900064]
  4. NASA [NNX11AM17A, NASA/LEQSF(2011-14)-Phase3-05]
  5. Louisiana Board of Regents [NNX11AM17A, NASA/LEQSF(2011-14)-Phase3-05]
  6. LONI
  7. CCT
  8. NSF
  9. NASA
  10. LEQSF
  11. National Research Foundation of Korea
  12. Div Of Civil, Mechanical, & Manufact Inn
  13. Directorate For Engineering [0900064] Funding Source: National Science Foundation

向作者/读者索取更多资源

The cold-drawn, programmed shape memory polymer (SMP) fibers show excellent stress recovery property, which promotes their application as mechanical actuators in smart material systems. A full understanding of the thermomechanical-damage responses of these fibers is crucial to minimize the trial-and-error manufacturing processes of these material systems. In this work, a multiscale viscoplastic-viscodamage theory is developed to predict the cyclic mechanical responses of SMP fibers. The proposed viscoplastic theory is based on the governing relations for each of the individual microconstituents and establishes the microscale state of the stress and strain in each of the subphases. These microscale fields are then averaged through the micromechanics framework to demonstrate the macroscale constitutive mechanical behavior. The cyclic loss in the functionality of the SMP fibers is interpreted as the damage process herein, and this cyclic loss of stress recovery property is calibrated to identify the state of the damage. The continuum damage mechanics (CDM) together with a thermodynamic consistent viscodamage theory is incorporated to simulate the damage process. The developed coupled viscoplastic-viscodamage theory provides an excellent correlation between the experimental and simulation results. The cyclic loading-damage analysis in this work relies on the underlying physical facts and accounts for the microstructural changes in each of the micro constituents. The established framework provides a well-structured method to capture the cyclic responses of the SMP fibers, which is of utmost importance for designing the SMP fiber-based smart material systems. [DOI: 10.1115/1.4007140]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据