4.5 Article

Errors Caused by Non-Work-Conjugate Stress and Strain Measures and Necessary Corrections in Finite Element Programs

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.4000916

关键词

buckling; computer software; finite element analysis; Green's function methods; shear deformation; stress-strain relations; tensors

向作者/读者索取更多资源

Many finite element programs including standard commercial software such as ABAQUS use an incremental finite strain formulation that is not fully work-conjugate, i.e., the work of stress increments on the strain increments does not give a second-order accurate expression for work. In particular, the stress increments based on the Jaumann rate of Kirchhoff stress are work-conjugate with the increments of the Hencky (logarithmic) strain tensor but are paired in many finite element programs with the increments of Green's Lagrangian strain tensor. Although this problem was pointed out as early 1971, a demonstration of its significance in realistic situations has been lacking. Here it is shown that, in buckling of compressed highly orthotropic columns or sandwich columns that are very soft in shear, the use of such nonconjugate stress and strain increments can cause large errors, as high as 100% of the critical load, even if the strains are small. A similar situation may arise when severe damage such as distributed cracking leads to a highly anisotropic tangential stiffness matrix, or when axial cracks between fibers severely weaken a uniaxial fiber composite or wood. A revision of these finite element programs is advisable, and will in fact be easy-it will suffice to replace the Jaumann rate with the Truesdell rate. Alternatively, the Green's Lagrangian strain could be replaced with the Hencky strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据