4.5 Article

Flow of a Biomagnetic Visco-Elastic Fluid in a Channel With Stretching Walls

出版社

ASME
DOI: 10.1115/1.3130448

关键词

biomagnetism; channel flow; differential equations; finite difference methods; friction; haemorheology; heat transfer; magnetisation; magnetocaloric effects; non-Newtonian fluids; viscoelasticity

资金

  1. Council of Scientific and Industrial Research, New Delhi
  2. UGC, New Delhi

向作者/读者索取更多资源

The flow of a visco-elastic fluid in a channel with stretching walls under the action of an externally applied magnetic field generated by a magnetic dipole was studied in this paper. As per an experimental report, the variation in magnetization M of the fluid with temperature T was approximated as a linear equation of state M=K1T, where K-1 is a constant called the pyromagnetic coefficient. In this investigation the model used is that of Walter's liquid B fluid, which includes the effect of fluid visco-elasticity. By introducing appropriate nondimensional variables, the problem is reduced to solving a coupled nonlinear system of ordinary differential equations subject to a set of boundary conditions. The problem is solved by developing a suitable numerical technique based on finite difference approach. Computational results concerning the variation in the velocity, pressure and temperature fields, skin friction and the rate of heat transfer with magnetic field strength, Prandtl number, and blood visco-elasticity are presented graphically. The results presented reveal that the velocity of blood in the normal physiological state can be lowered by applying a magnetic field of sufficient intensity. The study bears the promise of important applications in controlling the flow of blood during surgery and also during treatment of cancer by therapeutic means when it involves magnetic drug targeting (hyperthemia).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据