4.5 Article

Numerical Analysis of Double Contacts of Similar Elastic Materials

出版社

ASME
DOI: 10.1115/1.2967897

关键词

-

资金

  1. DARPA

向作者/读者索取更多资源

A fast numerical method based on the Cauchy singular integral equations is presented to determine the contact pressure and extents for the contact of two-dimensional similar isotropic bodies when the contact area consists of two separate regions. The partial-slip problem is then solved to determine shear tractions using an equivalence principle. The extents of the contact are not all independent but related to a compatibility equation constraining the displacements of an elastic body in contact with an equivalent rigid body. A similar equation is found for the extents of the stick zones in partial-slip problems. The effects of load history are incorporated into the shear solution. The method is applicable to a wide range of profiles and it provides significant gains in computational efficiency over the finite element method (FEM) for both the pressure and partial-slip problems. The numerical results obtained are compared with that from the FEM for a biquadratic indenter with a single concavity and showed good agreement. Lastly, the transition behavior from double to single contacts in biquadratic profiles is investigated. [DOI: 10.1115/1.2967897]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据