4.4 Article

Estimation of Reservoir Porosity and Water Saturation Based on Seismic Attributes Using Support Vector Regression Approach

期刊

JOURNAL OF APPLIED GEOPHYSICS
卷 107, 期 -, 页码 93-101

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jappgeo.2014.05.011

关键词

Porosity; Water saturation; Seismic Attributes; Support Vector Regression (SVR)

向作者/读者索取更多资源

Porosity and fluid saturation distributions are crucial properties of hydrocarbon reservoirs and are involved in almost all calculations related to reservoir and production. True measurements of these parameters derived from laboratory measurements, are only available at the isolated localities of a reservoir and also are expensive and time-consuming. Therefore, employing other methodologies which have stiffness, simplicity, and cheapness is needful. Support Vector Regression approach is a moderately novel method for doing functional estimation in regression problems. Contrary to conventional neural networks which minimize the error on the training data by the use of usual Empirical Risk Minimization principle, Support Vector Regression minimizes an upper bound on the anticipated risk by means of the Structural Risk Minimization principle. This difference which is the destination in statistical learning causes greater ability of this approach for generalization tasks. In this study, first, appropriate seismic attributes which have an underlying dependency with reservoir porosity and water saturation are extracted. Subsequently, a non-linear support vector regression algorithm is utilized to obtain quantitative formulation between porosity and water saturation parameters and selected seismic attributes. For an undrilled reservoir, in which there are no sufficient core and log data, it is moderately possible to characterize hydrocarbon bearing formation by means of this method. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据