4.4 Article Proceedings Paper

Shallow fault segmentation of the Alpine fault zone, New Zealand revealed from 2-and 3-D GPR surveying

期刊

JOURNAL OF APPLIED GEOPHYSICS
卷 70, 期 4, 页码 343-354

出版社

ELSEVIER
DOI: 10.1016/j.jappgeo.2009.08.003

关键词

Ground-penetrating radar; Active faults; Slip rates; Alpine fault zone; Fluvial terraces

向作者/读者索取更多资源

Where they are preserved, landforms that have been truncated and offset by past fault movements provide potentially valuable quantitative data that can be used to estimate slip rates. At such locations, it is important to investigate the fault zone in sufficient detail to understand how displacements are accommodated on individual fault strands. At a site along a northern section of the Alpine fault zone on the South Island of New Zealand, surface mapping of a series of faulted river terraces and channels has revealed a complicated and poorly understood paleoearthquake history. We have acquired high-resolution 2- and 3-D ground-penetrating radar (GPR) data over a large area (similar to 500 x 500 m) of the terraces to map along-strike changes in shallow (<20 m) fault zone morphology. By identifying distinct reflection patterns within the topographically migrated 3-D GPR volumes and extrapolating them to the longer and more widely spaced GPR profiles, we determined the subsurface extent of two main structural/depositional facies that were juxtaposed by three left-stepping en-echelon fault strands. Two regions of warped strata are interpreted to result from transpressive folding between the overlapping strands, where displacement is transferred from one fault to the next. We suggest that diffuse deformation between the overlapping fault tips results in anomalously low estimates for horizontal and vertical fault displacements of some geomorphic features. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据