4.5 Article

SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules

期刊

JOURNAL OF APPLIED CRYSTALLOGRAPHY
卷 42, 期 -, 页码 932-943

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0021889809032919

关键词

-

资金

  1. National Institutes of Health [R01-GM085648]
  2. Mathematical, Information, and Computational Sciences Division Subprogram of the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC02-06CH11357]
  3. Argonne National Laboratory

向作者/读者索取更多资源

This paper describes a computational approach to estimating wide-angle X-ray solution scattering (WAXS) from proteins, which has been implemented in a computer program called SoftWAXS. The accuracy and efficiency of SoftWAXS are analyzed for analytically solvable model problems as well as for proteins. Key features of the approach include a numerical procedure for performing the required spherical averaging and explicit representation of the solute-solvent boundary and the surface of the hydration layer. These features allow the Fourier transform of the excluded volume and hydration layer to be computed directly and with high accuracy. This approach will allow future investigation of different treatments of the electron density in the hydration shell. Numerical results illustrate the differences between this approach to modeling the excluded volume and a widely used model that treats the excluded-volume function as a sum of Gaussians representing the individual atomic excluded volumes. Comparison of the results obtained here with those from explicit-solvent molecular dynamics clarifies shortcomings inherent to the representation of solvent as a time-averaged electron-density profile. In addition, an assessment is made of how the calculated scattering patterns depend on input parameters such as the solute-atom radii, the width of the hydration shell and the hydration-layer contrast. These results suggest that obtaining predictive calculations of high-resolution WAXS patterns may require sophisticated treatments of solvent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据