4.7 Article

Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients

期刊

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY
卷 66, 期 2, 页码 227-231

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jac/dkq449

关键词

pharmacodynamics; dosing; population pharmacokinetics; susceptibility; minimum inhibitory concentration

向作者/读者索取更多资源

Infections in critically ill patients continue to result in unacceptably high morbidity and mortality. Although few data exist for correlating antibiotic exposure with outcome, antibiotic dosing is likely to be highly important for maximizing resolution of infection in many patients. The practical and financial difficulties of performing pharmacokinetic (PK) studies in critically ill patients mean that analyses to maximize data such as Monte Carlo simulation (MCS) are highly valuable. MCS uses computer software to perform virtual clinical trials. The building blocks for MCS are: firstly, a robust population PK model from the patient population of interest; secondly, descriptors of the effect of covariates that influence the PK parameters; thirdly, description of the susceptibility of bacteria to the antibiotic and finally a PK/pharmacodynamic (PD) target associated with antibiotic efficacy. Probability of target attainment (PTA) outputs can then be generated that describe the proportion of patients that will achieve a pre-specified PD target for an MIC distribution. Such analyses can then inform dosing requirements, which can be used to have a high likelihood of achieving PK/PD targets for organisms with different MICs. In this issue of JAC, Zelenitsky et al. provide a very useful example of MCS for interpreting the optimal methods for dosing meropenem, piperacillin/tazobactam, cefepime and ceftobiprole in critically ill patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据