4.7 Article

Components of the accuracy of genomic prediction in a multi-breed sheep population

期刊

JOURNAL OF ANIMAL SCIENCE
卷 90, 期 10, 页码 3375-3384

出版社

OXFORD UNIV PRESS INC
DOI: 10.2527/jas.2011-4557

关键词

genomic prediction; genomic selection; principal component analysis; population structure; relationship; sheep

资金

  1. Cooperative Research Centre for Sheep Industry Innovation
  2. Sheep Genomics project
  3. Meat and Livestock Australia
  4. Australian Wool Innovation Limited

向作者/读者索取更多资源

In genome-wide association studies, failure to remove variation due to population structure results in spurious associations. In contrast, for predictions of future phenotypes or estimated breeding values from dense SNP data, exploiting population structure arising from relatedness can actually increase the accuracy of prediction in some cases, for example, when the selection candidates are offspring of the reference population where the prediction equation was derived. In populations with large effective population size or with multiple breeds and strains, it has not been demonstrated whether and when accounting for or removing variation due to population structure will affect the accuracy of genomic prediction. Our aim in this study was to determine whether accounting for population structure would increase the accuracy of genomic predictions, both within and across breeds. First, we have attempted to decompose the accuracy of genomic prediction into contributions from population structure or linkage disequilibrium (LD) between markers and QTL using a diverse multi-breed sheep (Ovis aries) data set, genotyped for 48,640 SNP. We demonstrate that SNP from a single chromosome can achieve up to 86% of the accuracy for genomic predictions using all SNP. This result suggests that most of the prediction accuracy is due to population structure, because a single chromosome is expected to capture relationships but is unlikely to contain all QTL. We then explored principal component analysis (PCA) as an approach to disentangle the respective contributions of population structure and LD between SNP and QTL to the accuracy of genomic predictions. Results showed that fitting an increasing number of principle components (PC; as covariates) decreased within breed accuracy until a lower plateau was reached. We speculate that this plateau is a measure of the accuracy due to LD. In conclusion, a large proportion of the accuracy for genomic predictions in our data was due to variation associated with population structure. Surprisingly, accounting for this structure generally decreased the accuracy of across breed genomic predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据