4.7 Article

Push-broom hyperspectral imaging for elemental mapping with glow discharge optical emission spectrometry

期刊

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ja10241a

关键词

-

资金

  1. Swiss National Science Foundation through SNF [206021_128738/1]
  2. Swiss National Science Foundation (SNF) [206021_128738] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Glow discharge optical emission spectroscopy (GDOES) has been recognized for allowing direct solid sample elemental analysis with high depth resolution. However, the lateral resolution it affords has been historically restricted to some millimetres or the diameter of the sputtered area. Recently, it was shown that one can obtain laterally resolved information from within the sputtered area by operating the discharge in pulsed power mode. The newly available data dimensions require a new approach to the collection of the GDOES signal with lateral (to recover X and Y positions), spectral (to qualify and quantify elemental information), and temporal resolution (to improve lateral resolution and allow depth profiling). Previous studies have utilized spectral imagers of whisker-broom and staring geometries. In this study we characterize the advantages and disadvantages of using a push-broom geometry hyperspectral imager for GDOES elemental mapping. The results show that the higher light throughput of the push-broom geometry allows faster image acquisition times, compared to other spectral imaging systems with the same components, and thus maintain depth resolutions below 10 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据